en
Luca Massaron,Alberto Boschetti,Bastiaan Sjardin

Large Scale Machine Learning with Python

Értesítsen, ha a könyv hozzá lesz adva
Ennek a könyvnek az olvasásához töltsön fel EPUB vagy FB2 formátumú fájlt a Bookmate-re. Hogyan tölthetek fel egy könyvet?
Learn to build powerful machine learning models quickly and deploy large-scale predictive applications
About This BookDesign, engineer and deploy scalable machine learning solutions with the power of PythonTake command of Hadoop and Spark with Python for effective machine learning on a map reduce frameworkBuild state-of-the-art models and develop personalized recommendations to perform machine learning at scaleWho This Book Is ForThis book is for anyone who intends to work with large and complex data sets. Familiarity with basic Python and machine learning concepts is recommended. Working knowledge in statistics and computational mathematics would also be helpful.
What You Will LearnApply the most scalable machine learning algorithmsWork with modern state-of-the-art large-scale machine learning techniquesIncrease predictive accuracy with deep learning and scalable data-handling techniquesImprove your work by combining the MapReduce framework with SparkBuild powerful ensembles at scaleUse data streams to train linear and non-linear predictive models from extremely large datasets using a single machineIn DetailLarge Python machine learning projects involve new problems associated with specialized machine learning architectures and designs that many data scientists have yet to tackle. But finding algorithms and designing and building platforms that deal with large sets of data is a growing need. Data scientists have to manage and maintain increasingly complex data projects, and with the rise of big data comes an increasing demand for computational and algorithmic efficiency. Large Scale Machine Learning with Python uncovers a new wave of machine learning algorithms that meet scalability demands together with a high predictive accuracy.
Dive into scalable machine learning and the three forms of scalability. Speed up algorithms that can be used on a desktop computer with tips on parallelization and memory allocation. Get to grips with new algorithms that are specifically designed for large projects and can handle bigger files, and learn about machine learning in big data environments. We will also cover the most effective machine learning techniques on a map reduce framework in Hadoop and Spark in Python.
Style and ApproachThis efficient and practical title is stuffed full of the techniques, tips and tools you need to ensure your large scale Python machine learning runs swiftly and seamlessly.
Large-scale machine learning tackles a different issue to what is currently on the market. Those working with Hadoop clusters and in data intensive environments can now learn effective ways of building powerful machine learning models from prototype to production.
This book is written in a style that programmers from other languages (R, Julia, Java, Matlab) can follow.
Ez a könyv jelenleg nem érhető el
556 nyomtatott oldalak
Első kiadás
2016
Kiadás éve
2016
Már olvasta? Mit gondol róla?
👍👎
fb2epub
Húzza és ejtse ide a fájljait (egyszerre maximum 5-öt)