en
Books
Fouad Sabry

Descriptive Geometry

What is Descriptive Geometry

Descriptive geometry is the branch of geometry which allows the representation of three-dimensional objects in two dimensions by using a specific set of procedures. The resulting techniques are important for engineering, architecture, design and in art. The theoretical basis for descriptive geometry is provided by planar geometric projections. The earliest known publication on the technique was “Underweysung der Messung mit dem Zirckel und Richtscheyt”, published in Linien, Nuremberg: 1525, by Albrecht Dürer. Italian architect Guarino Guarini was also a pioneer of projective and descriptive geometry, as is clear from his Placita Philosophica (1665), Euclides Adauctus (1671) and Architettura Civile, anticipating the work of Gaspard Monge (1746–1818), who is usually credited with the invention of descriptive geometry. Gaspard Monge is usually considered the “father of descriptive geometry” due to his developments in geometric problem solving. His first discoveries were in 1765 while he was working as a draftsman for military fortifications, although his findings were published later on.

How you will benefit

(I) Insights, and validations about the following topics:

Chapter 1: Descriptive geometry

Chapter 2: Analytic geometry

Chapter 3: Affine transformation

Chapter 4: Orthographic projection

Chapter 5: 3D projection

Chapter 6: Oblique projection

Chapter 7: Vanishing point

Chapter 8: Picture plane

Chapter 9: Line (geometry)

Chapter 10: Parallel projection

(II) Answering the public top questions about descriptive geometry.

(III) Real world examples for the usage of descriptive geometry in many fields.

Who this book is for

Professionals, undergraduate and graduate students, enthusiasts, hobbyists, and those who want to go beyond basic knowledge or information for any kind of Descriptive Geometry.
346 nyomtatott oldalak
Első kiadás
2024
Kiadás éve
2024
Már olvasta? Mit gondol róla?
👍👎
fb2epub
Húzza és ejtse ide a fájljait (egyszerre maximum 5-öt)