en
Books
Fouad Sabry

Nonlinear Dimensionality Reduction

1: Nonlinear dimensionality reduction: Explore foundational concepts and the importance of reducing highdimensional data for easier analysis.

2: Linear map: Introduces the basics of linear mapping and its role in reducing data dimensionality in machine learning.

3: Support vector machine: Learn how support vector machines apply dimensionality reduction in classification tasks and pattern recognition.

4: Principal component analysis: Delve into PCA's technique for transforming data into a set of linearly uncorrelated variables.

5: Isometry: Examine how isometric techniques preserve distances between points while reducing data dimensions.

6: Dimensionality reduction: Understand the broader scope of dimensionality reduction and its applications in various fields.

7: Semidefinite embedding: Study semidefinite programming and its connection to dimensionality reduction methods.

8: Kernel method: Discover the power of kernel methods in handling nonlinear relationships in data reduction.

9: Kernel principal component analysis: Explore KPCA’s capability to perform dimensionality reduction in a highdimensional feature space.

10: Numerical continuation: Learn how numerical continuation techniques assist in understanding highdimensional systems.

11: Spectral clustering: Understand how spectral clustering leverages dimensionality reduction to group similar data points.

12: Isomap: A look at Isomap, a technique that combines multidimensional scaling with geodesic distances for dimensionality reduction.

13: Johnson–Lindenstrauss lemma: Delve into the mathematics of the JohnsonLindenstrauss lemma, which ensures dimensionality reduction maintains geometric properties.

14: LinearnonlinearPoisson cascade model: Study how this model integrates linear and nonlinear methods in dimensionality reduction.

15: Manifold alignment: Learn about manifold alignment and its importance in aligning data from different domains in dimensionality reduction.

16: Diffusion map: Understand how diffusion maps use the diffusion process for dimensionality reduction in complex datasets.

17: Tdistributed stochastic neighbor embedding: Explore tSNE's ability to reduce dimensionality while preserving local structures in data.

18: Kernel embedding of distributions: Study how kernel embedding allows for dimensionality reduction on distributions, not just datasets.

19: Random projection: A practical approach to dimensionality reduction that relies on random projections for fast computation.

20: Manifold regularization: Learn about manifold regularization techniques and their impact on learning from highdimensional data.

21: Empirical dynamic modeling: Discover how empirical dynamic modeling aids in dimensionality reduction through time series data analysis.
656 nyomtatott oldalak
Első kiadás
2024
Kiadás éve
2024
Már olvasta? Mit gondol róla?
👍👎
fb2epub
Húzza és ejtse ide a fájljait (egyszerre maximum 5-öt)